Diffraction at CDF

Christina Mesropian

The Rockefeller University

Diffraction at CDF in Run I

Soft Diffraction

Single Diffraction

PRD 50, 5355 (1994)

Double Diffraction PRL 87, 141802 (2001)

Double Pomeron Exc.
Accepted by PRL
Multi-Gap Diffraction
PRL 91, 011802 (2003)

Hard Diffraction

Rapidity Gap Tag

W PRL 78, 2698 (1997)
Dijets PRL 79, 2636 (1997)
b-quark PRL 84, 232 (2000)
J/Ψ PRL 87, 241802 (2001)

Roman Pot Tag Dijets:

1.8 TeV PRL 84, 5043 (2000) 630 GeV PRL 88, 151802 (2002)

Jet-Gap_Jet

1.8 TeV PRL 74, 855 (1995) 1.8 TeV PRL 80, 1156 (1998) 630 GeV PRL 81, 5278 (1998)

Dijets:

1.8 TeV PRL 85, 4217 (2000)

The Diffractive Structure Function

Subject of interest:

Hard diffraction process production of high p_T dijets

Study the diffractive structure function

$$F_{jj}^{D}(x,Q^{2},\xi) = g^{D}(x,Q^{2},\xi) + \frac{4}{9}q^{D}(x,Q^{2},\xi)$$

Measure ratio of SD to ND:

$$\mathbf{R}_{\frac{SD}{ND}}(x_{\bar{p}},\xi) = \frac{\sigma(SD_{ij})}{\sigma(ND_{ii})}$$

$$F_{jj}^{D}(x_{p},Q^{2},\xi) = R_{ND}(x_{p},\xi) \times F_{jj}(x_{p},Q^{2})$$

$$x = \beta \xi$$

The Diffractive Structure Function: Run I

$$\mathbf{F}_{jj}^{D} = C\boldsymbol{\beta}^{-n}\boldsymbol{\xi}^{-m}$$

Regge factorization holds

for $\beta < 0.5$ $n = 1.0 \pm 0.1$ $m = 0.9 \pm 0.1$

The Diffractive Structure Function using DPE dijets: Run I

$$R_{ND}^{SD} / R_{SD}^{DPE} = 0.19 \pm 0.07$$

see prediction from K. Goulianos hep-ph/0203141

 $F_{jj}^{D}(\beta)$ measured using DPE dijets is \approx to expectations from HERA

Factorization holds?

Tevatron:

 \sqrt{s} = 1.96 TeV 396 nsec bunch spacing 36x36 600 pb⁻¹ of luminosity delivered as of August 2004

CDF:

Data taking efficiency: ~ 80-90% 430 pb⁻¹ of data on tape

Forward detectors fully integrated

Run II: Forward Detectors

Scintillation counters:

detect particles traveling from IP along beam pipe $5.5 < |\eta| < 7.5$ coverage

Run II: MiniPlug Design

Run II: Diffractive Dijets

Process

Data:

Method

measure ξ from calorimeter information sum all towers except \overline{p}

$$\xi_{\overline{p}}^{X} = \frac{M_{X}^{2}}{S} \approx \frac{1}{\sqrt{S}} \sum_{i} E_{T}^{i} e^{-\eta^{i}}$$

MP energy scale: $\pm 25\% \rightarrow \Delta \log \xi = \pm 0.1$ RP acceptance (0.03< ξ <0.1) ~ 80% (Run I)

Run II: Diffractive Dijets

Flat part at ξ < 0.1

$$\frac{d\sigma}{d\xi} \propto \frac{1}{\xi} \rightarrow \frac{d\sigma}{d(\log \xi)} = const$$

Peak at ξ= 1
-overlap events from multiple interactions

Run II: Diffractive Dijets

Distributions for SD and ND samples

Diffractive Structure Function

Ratio of SD to ND dijet event rates as a function of x_{BJ} compared with Run

No ξ dependence is observed within $0.03 < \xi < 0.1$

Confirms Run I result

Ratio of SD to ND dijet event rates as a function of x_{BJ} for different values of $Q^2 \equiv E_T^2$ No appreciable dependence is observed for $100 < Q^2 < 1600 \text{ GeV}^2$

Pomeron evolves like proton?

Diffractive Higgs Production in DPE

Bialas and Landshoff Khoze, Martin, Ryskin Boonekamp, Peschanski, Royon

Attractive channel for Higgs discovery at LHC

Standard Model light Higgs:

$$p + p \rightarrow p + H(\rightarrow b\overline{b}) + p$$

"exclusive channel" →clean signal

$$\boldsymbol{M}_{H} = \boldsymbol{M}_{miss} = (s \cdot \boldsymbol{\xi}_{p} \cdot \boldsymbol{\xi}_{\bar{p}})^{1/2}$$

$$\sigma_H^{excl} \sim 3 fb$$
,

signal/background~3@LHC (if $\Delta M_{miss} = 1 \, GeV$)

To calibrate Diffractive Higgs predictions

exclusive production in DPE

Exclusive **Dijets**:

 $gg^{PP} \rightarrow gg$

large cross section

exclusive $gg^{PP} \rightarrow q\bar{q}$ suppressed

Exclusive χ_c^0 : $gg^{PP} \to \chi_c^0$ small cross section

clean signal

Exclusive Dijets in DPE: Run I

PRL 85, 4215 (2000)

132 inclusive DPE dijets:

events triggered by RP

kinematics: $0.035 < \xi < 0.095$

$$2.4 < \eta_{gap} < 5.9$$

2 jets,
$$E_T > 7 \, GeV$$

Dijet mass fraction

$$R_{jj} = \frac{M_{jj}}{M_X},$$

 M_{ii} - invar. mass of 2 lead. jets

 ${\pmb M}_{\it X}$ - mass of the whole system, except p and \overline{p}

expected shape of exclusive dijets

$$\sigma_{excl} < 3.7 \ nb \ (95\% \ CL)$$

Khoze, Martin, Ryskin:

1 nb (factor 2 uncertainty) for Run I kinematics

DPE Signal in SD Trigger Data

Kinematic Distributions

DPE jet E_⊤ steeper than ND

$$\overline{\Delta \Phi}_{DPE} > \overline{\Delta \Phi}_{SD} > \overline{\Delta \Phi}_{ND}$$

SD jets boosted away from \overline{p}

CDF Run II Preliminary

Dijet Mass Fraction

Exclusive Dijet Cross Section Limit

Triggered by RP+J5+BSC(E) gap

$$\left| \eta^{jet_{1,2}} \right| < 2.5$$
 $0.03 < \xi_{\bar{p}} < 0.1$
 $3.6 < \eta_{gap} < 7.5$
 $R_{cone} = 0.7$

 $R_{\it jj}$ falls smoothly as $R_{\it jj}
ightarrow 1$ no significant excess at high $R_{\it jj}$

Khoze, Martin, Ryskin Eur.Phys.J, C23,311 (2002)

Theoretical predictions:~60pb (factor of 2 uncertainty)

E_T^{jet1}	$\sigma_{DPE}(R_{jj} > 0.8)$
>10 GeV	$970 \pm 65(stat) \pm 272(syst) \ pb$
> 25 GeV	$34 \pm 5(stat) \pm 10(syst) \ pb$

Exclusive Dijet Events

Extracting Exclusive Dijets in DPE: Prospects

Experimental Method

normalize R_{jj} for all jets to R_{jj} for $Q\overline{Q}$ jets look for excess as $R_{ij} \to 1$

pros: many exp. systematics canceled out HF quarks identifies well:

g mistag @ O(1%)

cons: heavy quark mass

→ contribution from exclusive b/c

Theory

gg
ightarrow gg contribution is dominant in LO $gg
ightarrow q \overline{q}$ is suppressed when $M_{jj} >> m_q$

use $q\overline{q}$ suppression mechanism:

exclusive $gg \rightarrow gg$ might manifest itself as an excess over inclusive qq

at high R_{ij}

Supplemental analysis:

Difference of quark and gluon jets:

charged particle multiplicity in jet: N_{jet} $N_{g-jet} \cong \mathbf{1.6}N_{q-jet}$ (CDF Run I result) study how N_{jet} behaves as $R_{jj} \to \mathbf{1}$ pros: sensitivity to light quark jets cons: light q/g jets are not well separated

Exclusive $\chi_c^{"}$ Production in DPE

Event Selection:

Di-muon trigger – muon $p_T > 1.5 \text{ GeV }, |\eta| < 0.6$ Reject cosmic rays with time of flight information Select events in J/Ψ mass window Require large gaps on both p and p sides

Data sample 93 pb⁻¹

BSC+MP gap Calor. + CLC + trk + muon veto EM tower

107 events 23 events 10 events

Exclusive $\chi_c^{"}$ Cross Section Limit

Khoze, Martin, Ryskin Eur. Phys. J. C19, 477 (2001)

Theoretical Predictions:

$$\sigma(p\overline{p} \to p + \chi_c^0 + \overline{p}) \approx 600 \, nb$$

factor 2-5 uncertainty

$$\sigma(p\overline{p} \to p + \chi_c^0 (\to J/\Psi + \gamma) + \overline{p})$$

 $\approx 70 \ pb \ \text{at} \left| \mathbf{y}^{J/\Psi} \right| < 0.6$

Assuming 10 events are all $J/\Psi + \gamma$

$$\left|\mathbf{y}^{\mathrm{J/\Psi}}\right| < 0.6, \, p_{T}^{\mathrm{J/\Psi}} > 2 \, GeV$$

$$\sigma(p\overline{p} \to p + \chi_{c}^{0}(\to J/\Psi + \gamma) + \overline{p}) = 49 \pm 18(stat) \pm 39(syst) \, \mathrm{pb}$$

Diffractive Structure Function studies:

Goals

- Measure Q² and ξ (at low ξ < 0.03) dependence of F_{ii}^{D}
- lacktriangle Study process dependence of $F_{jj}^{\,D}$

Q² Dependence: analysis in progress

RP+J5 data: $100 < Q^2 < 1600 \text{ GeV}^2 \text{ range}$

RP+ higher jets even higher Q²

ξ Dependence: analysis in progress

BSC(W)Gap+J5 goes below $\xi = 0.03$

Process Dependence:

Measure \hat{F}_{jj}^{D} from SD W (probing quark) and J/ Ψ (probing gluon)

Prospects (continued):

Exclusive Final States studies:

Goals

- ❖Investigate existence/properties of exclusive final states
- ❖Derive the cross sections or limits

Exclusive Dijets: analysis in progress

extract exclusive dijets

quark/gluon composition as a function of R_{ii}

DPE b-jet trigger will be implemented after summer shutdown

Exclusive Low Mass States:

 χ_c^0 - DPE-J/ Ψ trigger - data being collected

 \mathcal{W} - DPE - $\gamma\gamma$ trigger in DAQ soon

Forward detectors are working well

- re-established Run I results using SD dijets
- no significant Q^2 dependence of F_{ii}^D
- ightharpoonup Study of ξ and process dependence of F_{jj}^{D} in progress
- Improved upper limit on exclusive dijet production
- Obtained upper limit on exclusive χ_c^0 production
- DPE b-jet analysis in progress
- New DPE triggers

Many new exciting results are coming soon...